✨Giải tích số

Giải tích số

phải|Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60 + 51/602 + 10/603 = 1.41421296... Ảnh của Bill Casselman. Giải tích số (tiếng Anh: numerical analysis), còn gọi là phương pháp tính, là ngành nghiên cứu về thuật toán sử dụng các số xấp xỉ đối với hàm liên tục (phân biệt với toán học rời rạc).

Một trong những bản ghi chép toán học sớm nhất về giải tích số là một bản ghi Babylon YBC 7289, trong đó nêu một phép tính xấp xỉ \sqrt{2}, độ dài đường chéo của hình vuông đơn vị.

Phương pháp trực tiếp và phương pháp lặp

Đối với phương pháp lặp, đặt f(x) = 3x3 - 24. Lấy a = 0, b = 3, f(a) = -24, f(b) = 57.

Theo bảng này, ta thấy nghiệm của phương trình nằm giữa 1.875 và 2.0625. Ta có thể lấy nghiệm là bất cứ giá trị nào trong đoạn này với sai số nhỏ hơn 0.2. |}

Rời rạc hóa

👁️ 57 | ⌚2025-09-16 22:28:51.344

QC Shopee
phải|Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60
phải|Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60
phải|Bản ghi Babylon YBC 7289 (khoảng 1800–1600 TCN) với cách tính căn bậc hai của 2 bằng bốn phép cộng phân số, liên quan đến hệ lục thập phân (cơ số 60). 1 + 24/60
**Giải tích phức**, hay còn gọi là **lý thuyết hàm biến phức**, là một nhánh của toán học nghiên cứu các hàm số biến phức. Giải tích phức có nhiều ứng dụng trong nhiều ngành
**Giải tích phức**, hay còn gọi là **lý thuyết hàm biến phức**, là một nhánh của toán học nghiên cứu các hàm số biến phức. Giải tích phức có nhiều ứng dụng trong nhiều ngành
nhỏ|Khu vực hấp dẫn kỳ lạ phát sinh từ một [[phương trình vi phân. Phương trình vi phân là một lĩnh vực quan trọng của giải tích toán học với nhiều ứng dụng cho khoa
nhỏ|Khu vực hấp dẫn kỳ lạ phát sinh từ một [[phương trình vi phân. Phương trình vi phân là một lĩnh vực quan trọng của giải tích toán học với nhiều ứng dụng cho khoa
Trong toán học, một **hàm giải tích** là một hàm số được thể hiện bằng một biểu thức chuỗi lũy thừa hội tụ. Có cả **hàm giải tích thực** và **hàm giải tích phức**, giống
Trong toán học, một **hàm giải tích** là một hàm số được thể hiện bằng một biểu thức chuỗi lũy thừa hội tụ. Có cả **hàm giải tích thực** và **hàm giải tích phức**, giống
Trong toán học, một **hàm giải tích** là một hàm số được thể hiện bằng một biểu thức chuỗi lũy thừa hội tụ. Có cả **hàm giải tích thực** và **hàm giải tích phức**, giống
**Giải tích hàm** là một ngành của giải tích toán học nghiên cứu các không gian vector được trang bị thêm một cấu trúc tôpô phù hợp và các toán tử tuyến tính liên tục
**Giải tích hàm** là một ngành của giải tích toán học nghiên cứu các không gian vector được trang bị thêm một cấu trúc tôpô phù hợp và các toán tử tuyến tính liên tục
Trong toán học, **giải tích thực** (tiếng Anh: _real analysis_) là phân ngành nghiên cứu về số thực, dãy số, chuỗi số thực và hàm số thực. Đi sâu vào các chủ đề của dãy
Trong toán học, **giải tích thực** (tiếng Anh: _real analysis_) là phân ngành nghiên cứu về số thực, dãy số, chuỗi số thực và hàm số thực. Đi sâu vào các chủ đề của dãy
Trong giải tích phức, một nhánh của toán học, **thác triển giải tích** là một kỹ thuật để mở rộng miền xác định của một hàm giải tích nhất định. ## Thảo luận khởi đầu
Trong giải tích phức, một nhánh của toán học, **thác triển giải tích** là một kỹ thuật để mở rộng miền xác định của một hàm giải tích nhất định. ## Thảo luận khởi đầu
nhỏ|400x400px| Tín hiệu thời gian guitar bass của chuỗi mở nốt La (55 Hz). nhỏ|400x400px| Biến đổi Fourier của tín hiệu thời gian guitar bass của chuỗi mở Một nốt (55 Hz). Phân tích Fourier
nhỏ|400x400px| Tín hiệu thời gian guitar bass của chuỗi mở nốt La (55 Hz). nhỏ|400x400px| Biến đổi Fourier của tín hiệu thời gian guitar bass của chuỗi mở Một nốt (55 Hz). Phân tích Fourier
**Định lý cơ bản của giải tích** chỉ rõ mối quan hệ giữa 2 vấn đề trung tâm của giải tích là đạo hàm và tích phân. Nội dung của định lý gồm hai phần:
**Định lý cơ bản của giải tích** chỉ rõ mối quan hệ giữa 2 vấn đề trung tâm của giải tích là đạo hàm và tích phân. Nội dung của định lý gồm hai phần:
**Định lý cơ bản của giải tích** chỉ rõ mối quan hệ giữa 2 vấn đề trung tâm của giải tích là đạo hàm và tích phân. Nội dung của định lý gồm hai phần:
nhỏ|Hình học giải tích **Hình học giải tích**, cũng được gọi là **hình học tọa độ** hay **hình học Descartes**, là môn học thuộc hình học sử dụng những nguyên lý của đại số. Thường
nhỏ|Hình học giải tích **Hình học giải tích**, cũng được gọi là **hình học tọa độ** hay **hình học Descartes**, là môn học thuộc hình học sử dụng những nguyên lý của đại số. Thường
Trong toán học, **giải tích biến phân** là một ngành nghiên cứu các bài toán tối ưu và những vấn đề có liên quan. Giải tích biến phân tổng hợp và mở rộng các phương
Trong toán học, **giải tích biến phân** là một ngành nghiên cứu các bài toán tối ưu và những vấn đề có liên quan. Giải tích biến phân tổng hợp và mở rộng các phương
Trong toán học, cụ thể hơn là trong giải tích phức, **thặng** **dư** là một số phức tỷ lệ với tích phân đường của hàm phân hình dọc theo một đường cong kín bao quanh
Trong toán học, cụ thể hơn là trong giải tích phức, **thặng** **dư** là một số phức tỷ lệ với tích phân đường của hàm phân hình dọc theo một đường cong kín bao quanh
Trong giải tích toán học, **tiệm cận** là một thuật ngữ mô tả các hành vi tại vô cùng. Ví dụ, giả sử ta quan tâm đến thuộc tính của hàm khi rất lớn. Nếu
Trong giải tích toán học, **tiệm cận** là một thuật ngữ mô tả các hành vi tại vô cùng. Ví dụ, giả sử ta quan tâm đến thuộc tính của hàm khi rất lớn. Nếu
nhỏ|Đa diện lồi trong không gian 3 chiều. Giải tích lồi không chỉ bao gồm nghiên cứu các tập con lồi trong không gian Euclid mà còn có các hàm lồi trong không gian trừu
nhỏ|Đa diện lồi trong không gian 3 chiều. Giải tích lồi không chỉ bao gồm nghiên cứu các tập con lồi trong không gian Euclid mà còn có các hàm lồi trong không gian trừu
nhỏ|Đa diện lồi trong không gian 3 chiều. Giải tích lồi không chỉ bao gồm nghiên cứu các tập con lồi trong không gian Euclid mà còn có các hàm lồi trong không gian trừu
Trong vi tích phân nói riêng, và trong giải tích toán học nói chung, **tích phân từng phần** là quá trình tìm tích phân của tích các hàm dựa trên tích phân các đạo hàm
Trong vi tích phân nói riêng, và trong giải tích toán học nói chung, **tích phân từng phần** là quá trình tìm tích phân của tích các hàm dựa trên tích phân các đạo hàm
Trong vi tích phân nói riêng, và trong giải tích toán học nói chung, **tích phân từng phần** là quá trình tìm tích phân của tích các hàm dựa trên tích phân các đạo hàm
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
|nhỏ|300x300px|Trong [[không gian Euclide ba chiều, ba mặt phẳng này biểu diễn các nghiệm của phương trình tuyến tính, và giao tuyến của chúng biểu thị tập các nghiệm chung: trong trường hợp này là
Sách - Giải toán bằng máy tính bỏ túi phương pháp trắc nghiệm giải tích & số phức (dùng chung các bộ sgk hiện hành) - HA Các em học sinh lớp 12 thân mến!
Sách - Giải toán bằng máy tính bỏ túi phương pháp trắc nghiệm giải tích & số phức (dùng chung các bộ sgk hiện hành) - HA Các em học sinh lớp 12 thân mến!
Trong lý thuyết số, **phân tích số nguyên** là việc phân tách một hợp số thành một tích của các số nguyên nhỏ hơn. Nếu các số nguyên đó giới hạn lại chỉ là số
Trong lý thuyết số, **phân tích số nguyên** là việc phân tách một hợp số thành một tích của các số nguyên nhỏ hơn. Nếu các số nguyên đó giới hạn lại chỉ là số
Trong lý thuyết số, **phân tích số nguyên** là việc phân tách một hợp số thành một tích của các số nguyên nhỏ hơn. Nếu các số nguyên đó giới hạn lại chỉ là số
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
**Lý thuyết số** là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà
Tích phân xác định được định nghĩa như diện tích _S_ được giới hạn bởi đường cong _y_=_f_(_x_) và trục hoành, với _x_ chạy từ _a_ đến _b_ **Tích phân** (Tiếng Anh: _integral_) là một